Nitrification inhibitors a tool to reduce N₂O-N emissions in winter wheat?

Riecke Finck¹, Gunda Schulte auf'm Erley², Henning Kage¹

¹ Agronomy and Crop Science, Kiel University, ² Thünen Institute of Climate-Smart Agriculture, Braunschweig

Introduction

N fertilization increases N₂O-N release from soil, contributing to greenhouse gas emissions in arable farming.

The use of nitrification inhibitors (NI)

Methods

N₂O-N measurements weekly throughout the year and additional measurements after emission events in a winter wheat (RGT Reform A) plot trial in Northern Germany in 2023 with a chamber system (Fig. 2). One as well as two factorial analysis was performed.

during N fertilization is presented as a way to reduce fertilizer-induced N_2O-N emissions (Fig. 1), but their suitability as a climate protection measure is the subject of controversial debate (emission time shift).

Aim

Evaluation of NI in terms of their greenhouse gas reduction and agronomic effects.

Figure 1: NI inhibit the transformation of ammonium to nitrate in the soil.

Figure 2: Measurement method (left: static N_2O-N chamber and different applied N fertilizers, right: spacer for the N_2O-N measuring system).

Experimental factors (4 repl. per variant):

- Urease inhibitor (UI): without / with
- Nitrification inhibitor (NI): without / with (varieties: DCD, DMPP, MPA)
- Two N fertilizer forms: Ammonium sulfate nitrate (ASN) / Urea
- Total N fertilization: 190 kg N ha⁻¹ applied in two doses in inhibited variants and in three doses in noninhibited variants.

Results

• Fertilizer induced N₂O-N release ranged between 0.17 and

Urea treatments

ASN treatments

- 0.69 % of total fertilizer-N.
- ASN application in three N doses emitted less N_2O-N than ASN in two doses (Fig. 3 A).
- NI addition to ASN decreased N₂O-N emission compared to ASN application in two doses, especially for DMPP (Fig. 3 A).
- NI addition to urea slightly decreased N₂O-N emission compared to urea application in three doses (Fig. 3 A).
- Grain yield was on average 10 % (urea treatments) to 20 % (ASN treatments) higher with NI (Fig. 3 B).
- Over both N forms, NI significantly reduced N₂O-N release (-0.5 kg N ha⁻¹) and increased grain yield (+1.0 t ha⁻¹) compared to treatments in two doses without NI (data not shown, two-factorial analysis (N form x NI))

Conclusions

- Higher N rates and wet conditions for the first doses and dry conditions around the third N dose probably caused the differences in N₂O emissions between N doses.
- Results will be further verified in the upcoming experimental years.

UI	—	—	—	—	—	+	+
NI	—	_	DCD+T	DMPP	—	—	MPA
N doses	2	3	2	2	3	2	2

Figure 3: Treatment effects on (A) N₂O-N emissions and (B) grain yield (harvest year 2023). N₂O-N emissions were cumulated over the measurement period (March 28, 2023 to February 28, 2024). Percentages refer to the respective base scenario (ASN in 2 N doses/ Urea in 3 N doses). N total = 190 kg N ha⁻¹ (2 N doses: 100/90 kg N ha⁻¹, 3 N doses: 70/70/50 kg N ha⁻¹). Capital letters indicate significant differences (p < 0.05), one-factorial analysis per fertilizer.

Contact: Riecke Finck

Agronomy and Crop Science, Kiel University e-mail: finck@pflanzenbau.uni-kiel.de

by decision of the German Bundestag

Kiel University Christian-Albrechts-Universität zu Kiel