

Site-differentiated assessment and efficacy of nitrification inhibitors as a climate mitigation measure in crop production: the joint project 'NitriKlim'

Gunda Schulte auf'm Erley, Arnold Wonneberger, Andreas Pacholski, Heiner Flessa, Anne-Catherine Groven, Christoph Tebbe, Eva Weidemann, Matthias Gaßmann, Cindy Seeling, Mona Dieser, Jörg-Michael Greef, Ines Binder, Reiner Ruser, Riecke Finck, Henning Kage, Christoph Budke, Diemo Daum, Felix Ohmann, Hans-Werner Olfs, Tobias Jorissen, Guido Recke, Rosanna Schneider, Klaus Dittert, Lea Krug, Jan Rücknagel

Background

- Agriculture is responsible for about 80% of the total nitrous oxide (N,O) emission in Germany with application of synthetic and organic fertilizers being the main sources of N₂O.
- Nitrification inhibitors (NI) inhibit the transformation of fertilizer ammonium to nitrate, thereby reducing direct N₂O emission by nitrification and denitrification and indirect N₂O emission from nitrate leaching (Fig. 1).

FIG 1: Mineral N transformations in soil influencing N₂C formation and postulated effects of NIs

Objectives

Nitrification inhibitors could potentially be recommended as climate protection measure on a national scale. However, there are some open questions with regard to the precise potential of N₂O emission reduction, to crop production and economic outcome, and environmental issues.

Research questions and experimental approaches

Assessing reductions in N₂O emission

Reduction of N₂O emissions at different sites?

 Field experiments at seven sites in Germany (Fig. 2; ● wheat and ○ brokkoli)

Relevant reduction effect on an annual basis?

Whole-year N₂O measurements

Effectiveness of different NIs?

Comparison of available NIs in field + lab incubation experiments (DMPP, DCD+ATC, MPA, DMPSA, Nitrapyrin, 2-NPT)

FIG 2: Field exp sites, data based on German Weather Service 1991-2020

Assessing crop production and economic outcome

Effects on crop yield and quality?

- Yield and quality assessments in field experiments + literature data
- Simplified fertilization management with NIs?
- Effects of less N doses on yield and nitrogen uptake
- **Economic outcome of using NIs?**
- Cost calculations based on field experimental management data Level of acceptance among farmers?
- Acceptance analysis by questionnaire for farmers

Anticipated results

- Assessment of efficacy of NIs on direct and indirect (gaseous NH₃, nitrate leaching) N₂O emissions from fertilizers
- Integration of NI effects in the national greenhouse gas reporting
- Regionalized concepts for application of NI in crop production
- Evaluation of environmental risks connected with use of NI

Long-term effects of repeated NI application, including efficacy of newly applied NIs?

- Field experiments at seven sites in Germany with 3-year crop rotations and repeated application of NI (Fig. 2, ●, ●)
- Nitrification potential in the soil after 3 years
- Lab incubation experiment including soils with long-term NI application history

Effects on nitrate leaching and associated indirect N₂O emissions?

- Modelling of nitrate leaching at field experimental sites
- Leaching experiments with soil columns simulating heavy rainfall

Assessing environmental concerns

Negative impacts on soil microbial communities?

- Soil microbiome analysis from field experiments
- Risk of NI leaching to the ground water?
- Leaching experiments with soil columns of contrasting texture
- Modelling of the leaching process for different NIs
- Stimulation of ammonia or methane emissions?
- NH₃ emissions measurements after fertilizer (slurry) application
- CH₄ emissions are measured along with N₂O

Project partners

THÜNEN	. Thünen Institute of Climate-Smart Agriculture, Braunschweig	UNIKASSEL VERSITÄT	 Kassel University, Environmental Chemistry
THÜNEN 2	 Thünen Institute of Biodiversity, Braunschweig 		 Osnabrück University of Applied Sciences
A	 Georg August University Göttingen, Plant Nutrition 	<u>∮јкі</u>	 Julius K ühn-Institute of Crop and Soil Science, Braunschweig
C A U Christian-Albrechts-Universität ov Ka	I. Christian-Albrechts-University Kiel, Agronomy and Crop Science	UNIVERSITY OF HOHENHEIN	9. Hohenheim University, Department of Fertilization and
	 Martin Luther University Halle with SKW, Cunnersdorf testing site 		Soil Matter Dynamics

ct is supported by funds of the Federal Ministry of Fo IND Agriculture (BMEL) based on a decision of the Parliam he Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE), grant number 2822ABS015

